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GAUSS’s THEOREM 
and 
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Magnetic monopoles  
do not exist in nature.  

TARGET PROBLEM 

+ 

S                       N 

MAGNETIC FIELD ELECTRIC FIELD 

1 

 
 How can we express this 

information for       and     
     using the mathematical formalism? 

E B



TARGET PROBLEM 
Let’s consider some ELECTRIC CHARGES 

+ 

+ 

- 

and two closed surfaces, S1 and S2 

S1 does not contain any charge. 
     It has no sources and no sinks: 
     no field lines destroyed and  
     no field lines created inside S1  
 

S2 do contain a charge. 
     It has a sink. Field lines are destroyed inside S2  

1

0
S

E dS⋅ =∫∫

2

0
S

E dS⋅ ≠∫∫

We want to find the differential form of the Guass’s law.  
(i.e. to express the Guass’s law without using integrals) 

 
•  to introduce the divergence of a vector field    , 
 

•  the Gauss’s theorem 
 S V

A dS divAdV⋅ =∫∫ ∫∫∫

A div A

2 

0S

QE dS
ε

⋅ =∫ Guass’s law    (see the 6th week of this  
                               course for details or  
                               “Teoretisk elektroteknik”) 

S1 

S2 



THE DIVERGENCE (DIVERGENSEN) 

DEFINITION 

In cartesian coordinates, the divergence of a vector field      is: 

yx z
AA AdivA

x y z
∂∂ ∂

≡ + +
∂ ∂ ∂

It is a measure of how much the field diverges (or converges) from (to) a point. 

(1) 

A

3 

EXAMPLE: 
 

 Assume that       is the velocity field of a gas. A
 If heated, the gas will expand creating  
        a velocity field that will diverge. 
 The divergence of       in the heating point will be positive A
 If cooled, the gas will contract creating  
        a velocity field that will converge on the cooling position. 
        The divergence will be negative 
 The heating position is a source of the velocity field and 
        the cooling position is a sink of the velocity 

The divergence is a measurement of sources or sinks 
(this will be more clear using the Guass’s theorem) 



THE GAUSS’s THEOREM 

S V

A dS divAdV⋅ =∫∫ ∫∫∫
where S is a closed surface that forms the boundary of the volume V  
and      is a continuously differentiable vector field defined on V. 

x 

y 

z 

dx 
dy Sp 

S1 

S2 

z=f2(x,y) 

z=f1(x,y) 

V 

(2) 

S 
2n̂

2dS

1̂n
1dS

2 2 2

1 1 1

ˆ ˆ ˆ
ˆ ˆ ˆ

z z

z z

dxdy dS n e dS e
dxdy dS n e dS e

= ⋅ = ⋅

= − ⋅ = − ⋅

A
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THE GAUSS’s THEOREM 
PROOF 

yx z

V V

yx z

V V V

AA AdivAdV dxdydz
x y z

AA Adxdydz dxdydz dxdydz
x y z

∂ ∂ ∂
= + + = ∂ ∂ ∂ 

∂∂ ∂
+ +

∂ ∂ ∂

∫∫∫ ∫∫∫

∫∫∫ ∫∫∫ ∫∫∫

Let’s calculate the  last term: 

[ ]
2

1

( , )

2 1
( , )

( , , ( , )) ( , , ( , ))
p p

f x y
z z

z z
V S f x y S

A Adxdydz dxdy dz A x y f x y A x y f x y dxdy
z z

∂ ∂
= = − =

∂ ∂∫∫∫ ∫∫ ∫ ∫∫
dxdy is the projection on Sp of the small element surfaces on dS1 and dS2. 
 
Therefore: 1 1 2 2ˆ ˆ ˆ ˆz zdxdy e n dS e n dS= − ⋅ = ⋅

2 1

2 2 2 1 1 1ˆ ˆ ˆ ˆ ˆ ˆ( , , ( , )) ( , , ( , ))z z z z z z
S S S

A x y f x y e n dS A x y f x y e n dS A e ndS= ⋅ + ⋅ = ⋅∫∫ ∫∫ ∫∫

ˆ ˆz
z z

V S

A dV A e ndS
z

∂
= ⋅

∂∫∫∫ ∫∫Which means: (3) 
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ˆ ˆ

ˆ ˆ

x
x x

V S

y
y y

V S

A dV A e ndS
x
A

dV A e ndS
y

∂
= ⋅

∂

∂
= ⋅

∂

∫∫∫ ∫∫

∫∫∫ ∫∫

THE GAUSS’s THEOREM 
PROOF 

In the same way we get: 

(4) 

(5) 

Adding together equations (3), (4) and (5) we finally obtain: 

ˆ ˆ ˆ ˆ ˆ ˆ

yx z

V V V V

x x y y z z
S S S S

AA AdivAdV dxdydz dxdydz dxdydz
x y z

A e ndS A e ndS A e ndS A dS

∂∂ ∂
= + + =

∂ ∂ ∂

⋅ + ⋅ + ⋅ = ⋅

∫∫∫ ∫∫∫ ∫∫∫ ∫∫∫

∫∫ ∫∫ ∫∫ ∫∫
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1- Consider a closed surface. 
 

 

2- Divide the surface in two parts, an upper surface and a lower surface and consider an 
      infinitesimal surface element dS1 on the upper surface. 
 

 

3- Consider the projection of the surface element on the xy plane, it will be dxdy. The     
     projection will identify a infinitesimal surface element (dS2) on the lower surface. 

 

 

4- Write the expression that relates dxdy to dS1 and dS2. 
 

 
 

6- Split the volume integral into three terms.  
 

       
 

 

      6.1- Consider only the term which depends on the z-derivative of Az. 
 

       

 

      6.2- Remove the z-derivative by solving the integral in dz.  
              What will remain is just the integral in dxdy. 
 

       

 

      6.4- Re-arrange the integrals in dS1 and dS2 in order to have obtain  
              a flux integral of (0,0,Az). 

 

 

      6.3- Express dxdy in order to obtain dS1 and dS2. 
 

       

 

7- Repeat the same for the terms which depend on the x-derivative of Ax and on the y-
derivative of Ay. 
 

 

5- Write down the volume integral of   
 

divA

 

8- Add all the three terms together in order to obtain the flux of      . A

Rearrange in logic order the steps to prove the Gauss’s theorem 



THE GAUSS’s THEOREM 
PROOF 

x 

y 

z 

What if we consider a more complicated volume? 

V 

V1 

V2 

We divide the volume V 
in smaller and “simpler” volumes 

i

i

iV V

i S S

divAdV divAdV

A dS A dS

= =

⋅ = ⋅

∑∫∫∫ ∫∫∫

∑∫∫ ∫∫

1 2 ... i
i

V V V V= + + = ∑
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PHYSICAL INTERPRETATION 

Suppose that          is the velocity field of a gas 
 
Let’s apply the Gauss’ theorem to a volume V of the gas 

( )
S V

v dS div v dV⋅ =∫∫ ∫∫∫

If there are no sinks and no sources, 
then no gas flows in S  
and no gas flows out from S. 
This implies that the flow                is zero. 
Therefore,  

                ⇒ No sink and no source 
                  ⇒ flux is destroyed 
       and there is a sink 
                    

                                   ⇒ flux is created 
       and there is a source 

S

v dS⋅∫∫
( ) 0div v =

( ) 0div v =
( ) 0div v <

( ) 0div v >

( )v r

8 

 
This term is the volume per second [m3/s] 
that flows out (in) from the closed surface S  



TARGET PROBLEM 

Magnetic monopoles do not exists  ⇒ the flux of B is zero 

Let’s apply the Gauss’s theorem to the magnetic field: 

0
S

B dS⋅ =∫∫

S V

B dS divBdV⋅ =∫∫ ∫∫∫Gauss 

One of the four  
Maxwell’s 
equations 

0divB =

9 

Magnetic monopoles do not exist in nature.  
What this implies, in terms of the magnetic field? 

Exercise: apply the Gauss’s theorem  
 
to the Guass’s law:  
 0

QE dS
ε

⋅ =∫∫



WHICH STATEMENT IS WRONG? 

1- The divergence of a vector field is a scalar (yellow) 
 
 
2- The divergence is related to a measurement of the flux (red) 
 
3- The Gauss’ theorem translates a surface integral  
      into a volume integral  (green) 

 
 
4- The Gauss’ theorem can be applied also to a non closed surface (blue) 
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VEKTORANALYS 

CURL (ROTATIONEN) 
 

and  
 

STOKES’s THEOREM 



TARGET PROBLEM 

• The current       is flowing in a conductor 
 
• How to calculate the magnetic field? 

B 

I 

We need: 
 
• Definition of the “curl” (or rotor) of a vector field 
 
 
 

• The Stokes’ theorem 
 
 
 

•A law that relates the current with the magnetic field: 
  the fourth Maxwell’s equation (with static electric field):  
 

0rotB jµ=

rot A

L S

A dr rotA dS⋅ = ⋅∫ ∫∫

11 

I

(see  “Teoretisk elektroteknik”) 



THE CURL (ROTATIONEN) rot A

DEFINITION (in cartesian coordinate) 

ˆ ˆ ˆ

, ,

x y z

y yx xz z

x y z

e e e
A AA AA Arot A

x y z y z z x x y
A A A

∂ ∂ ∂ ∂∂ ∂∂ ∂ ∂
= = − − − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

rot stands for “rotation” 
In fact, the curl is a measure of how much the direction of a vector field  
changes in space, i.e. how much the field “rotates”. 
 
In every point of the space,            is a vector whose length and direction  
characterize the rotation of the field      . 
 The direction is the axis of rotation of  
 The magnitude is the magnitude of rotation of  

12 

rot A

A
A

A



THE CURL rotA

EXAMPLE 

( , , ) ( , ,0)A x y z y x= −

x 

y 

Direction:    the direction is the axis of rotation, i.e. perpendicular to  
      the plane of the figure 
      The sign (negative, in this case) is determined by the right-hand rule 
Magnitude: the amount of rotation 
     In this example, it is constant and independent of the position, i.e. 
                   the amount of rotation is the same at any point. 
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Exercise: calculate the curl of          A



PHYSICAL INTERPRETATION 
THE CURL rotA

Consider the rotation of a rigid body 
around the z-axis 
 
The coordinates of a point P on the body 
located at the distance a from the z-axis 
and at z=z0 changes in time: 

z 

x 

y 

0

( ) cos
( ) sin

x t a t
y t a t
z z

ω
ω

=
=

=

The velocity of the point P is: 

P 

a 
z0 

( )
( ) sin ( )
( ) cos ( ) , ,0

0

x

y

z

v t a t y t
v t a t x t v y x
v

ω ω ω
ω ω ω ω ω

= − = −
= = ⇒ = −
= 

Therefore ( )0,0,2rot v ω=

1
2

rot vω =

14 



L 

THE STOKES’ THEOREM 

L S

A dr rotA dS⋅ = ⋅∫ ∫∫
where     is a vector field, L is a closed curve and  
S is a surface whose boundary is defined by L. 
   must be continuously differentiable on S 

y 

z 

x 

n̂
S 

A

A
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Si 

1.  We divide S in “many” “smaller” 
     (infinitesimal) surfaces: 

THE STOKES’ THEOREM 
PROOF 

L 
y 

z 

x 

S 

S3 

S1 

S2 

Si 

Si
z 

Si
y Si

x 

i

i
S S= ∑

2. We project Si on: 
  the xy-plane  Si

z 
  the yz-plane  Si

x 
  the xz-plane  Si

y 

3. We prove the Stokes‘ theorem on Si
z’ 

     (the only difficult part) 
 

Five steps: 

4. We add the results for the projections together  
    and we obtain the Stokes‘ theorem on Si

 

5. We add the results for Si together  
    and we obtain the Stokes‘ theorem on S 

16 



Let’s consider the plane surface Si
z 

located in the xy-plane (i.e. z=constant=z0) 
with boundary defined by the curve Li

z 
 

THE STOKES’ THEOREM 
PROOF 

y 

z 

x 

ˆze

Si
z 

Li
z 

Let’s calculate 
i
zL
A dr⋅∫

i
zL
A dr⋅ =∫

Term 3  =0  (z=constant!⇒ dz=0) 

Term 1 Term 2 Term 3 

L1 

L2 

y=f(x) 

y=g(x) Term 1 

0( , , )
i
z

xL
A x y z dx∫

0 0 0( , , ) ( , , ) ( , , )
i
z

x y zL
A x y z dx A x y z dy A x y z dz+ +∫

1 2
0( , , )xL L

A x y z dx
+

= =∫

1 2
0 0( , , ) ( , , )x xL L

A x y z dx A x y z dx+ =∫ ∫
0 0( , ( ), ) ( , ( ), )

b a

x xa b
A x f x z dx A x g x z dx+ =∫ ∫

y 
Li

z 

x a b 

Si
z 

17 



[ ]0 0 0 0( , ( ), ) ( , ( ), ) ( , ( ), ) ( , ( ), )
b b b

x x x xa a a
A x f x z dx A x g x z dx A x f x z A x g x z dx= − = − =∫ ∫ ∫

THE STOKES’ THEOREM 
PROOF 

i
z i

z

y x
L

S

A AA dr dxdy
x y

∂ ∂
⋅ = − ∂ ∂ 

∫ ∫∫
Adding Term 1, Term 2 and Term 3: 

It is the z-component of rotA !! 
Term 2 0( , , )

i
z i

z

y
yL

S

A
A x y z dx dxdy

x
∂

=
∂∫ ∫∫

In a similar way: 

Term 1 0( , , )
i
z i

z

x
xL

S

AA x y z dx dxdy
y

∂
= −

∂∫ ∫∫
Therefore we get: 

( ) ( )0
( ) ( )

( , , )
i
z

b f x b g xx x x
a g x a f x

S

A x y z A Adxdy dxdy dxdy
y y y

∂ ∂ ∂
= − = −

∂ ∂ ∂∫ ∫ ∫ ∫ ∫∫

18 



THE STOKES’ THEOREM 

ˆ( ) ( )
i
z i i

z

z z zL
S S

A dr rotA dxdy rotA e dS⋅ = = ⋅∫ ∫∫ ∫∫
So can rewrite it as: 

ˆ( )
i
y i

y yL
S

A dr rotA e dS⋅ = ⋅∫ ∫∫
ˆ( )

i
x i

x xL
S

A dr rotA e dS⋅ = ⋅∫ ∫∫

In a similar way we have: 
ˆ ˆ ˆz zdxdy e ndS e dS= ⋅ = ⋅

Now let’s add everything together: 

i i
y z

ii
xL L LL
A dr A dr A dr A dr⋅ + ⋅ + ⋅ = ⋅∫ ∫ ∫ ∫

Si 

Li 

Li
x 

Li
y 

Li
z 

ˆ ˆ ˆ( ) ( ) ( )
i i i i

x x y y
S

z z
S S S

rotA e dS rotA e dS rotA e dS rotA dS⋅ + ⋅ + ⋅ = ⋅∫∫ ∫∫ ∫∫ ∫∫
19 



 

2  -Divide the surface in small areas Si and consider the projection of Si on the xy, yz, xz planes 
 

3  - Prove the Stokes’ theorem on Si
z: 

 

        3.1 - Write the line integral of the vector field along the boundary of Si
z and split the integral 

         into three terms. 
 

 

 

    3.3 -Repeat the same for the integral in dy and dz  
  

     

 
 

4  -Prove the Stokes’ theorem on Si: 
 

     

 

    4.1  -Repeat the same procedure for Si
x and Si

y  
  

     

  

  5  -Prove the Stokes’ theorem on S: add together all the expressions obtained for Si 

 

 

    3.2 - Consider only the integral in dx and prove that    0( , , )
i
z i

z

x
xL

S

AA x y z dx dxdy
y

∂
= −

∂∫ ∫∫

3.4  -Add the three integrals in dx, dy and dz to obtain 
 

     

( )
i
z i

z

zL
S

A dr rotA dxdy⋅ =∫ ∫∫

3.5  -Rewrite dxdy to obtain       
 

ˆ( )
i
z i

z zL
S

A dr rotA e dS⋅ = ⋅∫ ∫∫

  

   4.2 - add together the expressions for the integrals in Si
x to Si

y and Si
z obtaining: 

 

 
i

i
L

S

A dr rotA dS⋅ = ⋅∫ ∫∫

1  - Consider a closed path and a surface whose boundary is defined by the closed path. 
 

Rearrange in logic order the steps to prove the Stokes’ theorem 



THE STOKES’ THEOREM 
PROOF 

x 

L 
y 

z 
S 

S3 

S1 

S2 

Si 

i
i

L
S

A dr rotA dS⋅ = ⋅∫ ∫∫

Li 

iL
i

A dr⋅∑∫

= 

L S

A dr rot A d S⋅ = ⋅∫ ∫∫

But we are interested in the whole S. 
So we add these small contributions  
altogether: 

ii SS

rotA dS rotA dS⋅ = ⋅∑∫∫ ∫∫

L
A dr= ⋅∫

L 

20 



TARGET PROBLEM 
Now we can calculate the magnetic field     at a  
   distance a from the conductor. 

B 

I 
0rotB jµ=Ampere’s law 

Where      is the current density: 

S

I j dS= ⋅∫∫

0 0 0
L S S S

B dr rotB dS j dS j dS Iµ µ µ⋅ = ⋅ = ⋅ = ⋅ =∫ ∫∫ ∫∫ ∫∫

Ampere Stokes 

21 
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THE GREEN FORMULA IN THE PLANE 

L S

A dr rot A d S⋅ = ⋅∫ ∫∫

( )
D L

Q P dxdy Pdx Qdy
x y

 ∂ ∂
− = + ∂ ∂ 

∫∫ ∫

We can start from Stokes’ theorem 

PROOF 

( ) ( )x y z x y
L

A dr A dx A dy A dz A dx A dy⋅ = + + = +∫ ∫ ∫
But we are in a plane,  

so we can assume A=(Ax,Ay,0) 

ˆ ˆy x
z z

S S

A Arot A d S e e dxdy
x y

∂ ∂
⋅ = − ⋅ ∂ ∂ 

∫∫ ∫∫
=1 

ˆ ˆ ˆ

0

x y z

x y

e e e

x y z
A A

∂ ∂ ∂
∂ ∂ ∂

( )y x
x y

D L

A A dxdy A dx A dy
x y

∂ ∂
− = + ∂ ∂ 

∫∫ ∫

which is the Green formula 
for P=Ax and Q=Ay 

THEOREM (7.1 in the textbook) 

22 



CURL FREE FIELD AND SCALAR POTENTIAL 
(virvelfria fält och skalär potential) 

DEFINITION: A vector field     is “curl free” if              

               ⇔ has a scalar potential φ,    

PROOF 

(1) 

0
L S

A dr rot A d S⋅ = ⋅ =∫ ∫∫
If the circulation is zero, then the field is conservative  
and has a scalar potential. See theorem 4.5 in the textbook.  

(2) 

, ,rot A rot grad rot
x y z
φ φ φφ

 ∂ ∂ ∂
= = = ∂ ∂ ∂ 

THEOREM (7.5 in the textbook) 

Sometimes called “irrotational” 

ˆ ˆ ˆx y ze e e

x y z

x y z
φ φ φ

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

0rot A =

23 

A 0rot A =

0rot A = A gradφ=

A gradφ=

, , (0,0,0)
y z z y

φ φ ∂ ∂ ∂ ∂
= − = ∂ ∂ ∂ ∂ 

 



SOLENOIDAL FIELD AND VECTOR POTENTIAL 

DEFINITION:  A vector field     is called solenoidal if 

 
 

    has a vector potential    ,                  

PROOF 

DEFINITION:  The vector field    has a vector potential      if ,   
  

(1)    has a vector potential     ⇒                     ⇒   

(2)   
 Let’s try to find a solution     to the equation  

We start looking for a particular solution A* of this kind: 

( )* * *( , , ), ( , , ), 0x yA A x y z A x y z=

THEOREM (7.7 in the textbook) 

B

B

B

B

0divB =

A B rotA=

A 0B rotA divB= ⇔ =

B rotA= ( ) 0divB div rotA= =

0divB =
B rotA=A

24 



The general solution can be found using  : 

B=rotΑ 

CURL FREE FIELD AND SCALAR POTENTIAL 
PROOF 

Assuming       we obtain:  

0

0

0 0

*
*

*
*

* *

( , , ) ( , , ) ( , )

( , , ) ( , , ) ( , )

zy
x y xz

zx
y x yz

z zy yx x
z zz z

A
B A x y z B x y z dz F x y

z
A B A x y z B x y z dz G x y
z

A BA B F GB dz dz B
x y x x y y

∂
− = ⇒ = − +

∂
∂

= ⇒ = +
∂

∂ ∂∂ ∂ ∂ ∂
− = ⇒ − + − − =

∂ ∂ ∂ ∂ ∂ ∂

∫

∫

∫ ∫

But divB=0 ⇒ yx z
BB B

x y z
∂∂ ∂

+ = −
∂ ∂ ∂ 0

z
z

zz

B F Gdz B
z x y

∂ ∂ ∂
+ − =

∂ ∂ ∂∫
0( , , ) ( , , )z zB x y z B x y z= −

0( , , )z
F G B x y z
x y

∂ ∂
− =

∂ ∂
⇒ 

A solution to this equation is: 
0

0

( , ) 0

( , ) ( , , )
y

zy

F x y

G x y B x y z dy

=

= − ∫

( )
0 0 0

*
0( , , ) ( , , ) , ( , , ) , 0

z y z

y z xz y z
A B x y z dz B x y z dy B x y z dz= − −∫ ∫ ∫

B=rotΑ 

( )* * *0rot A A B B A A grad A A gradψ ψ− = − = ⇒ − = ⇒ = +

25 



WHICH STATEMENT IS WRONG? 

1- The curl of a vector field is a scalar (yellow) 
 
 
2- The curl is related to the line integral of a field  
     along a closed surface    (red) 
 
 
3- Stokes’ theorem translates a line integral into a surface integral 
    (green) 

 
 
4- The Stokes’ theorem can be applied only to a closed curve 
    (blue) 

26 
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